

Pre-flight Testing and Performance of a Ka-band Software Defined Radio

Joseph Downey, Richard Reinhart, Tom Kacpura

NASA Glenn Research Center Cleveland, Ohio

Outline

- Background
- Ka-band SDR
- Testing
- Performance Results
- Future Work

Background

- NASA is studying the development, testing, and operation of software defined radios (SDRs) for the space environment
- NASA has built a reconfigurable testbed comprised of SDRs for the space environment
- **SCaN Testbed**
 - 3 SDRs
 - **Space Telecommunications** Radio System (STRS)compliant
 - L-band, S-band, Ka-band

SCaN Testbed Flight System Connections

Harris Corporation Ka-band SDR

- Reconfigurable / Reprogrammable Signal Processing
 - Field Programmable Gate Arrays (FPGAs)
 - Digital Signal Processor (DSP)
 - Single Board Computer, PowerPC
- STRS-compliant Operating Environment
 - Manages waveform applications
 - Command / Telemetry

Tunable RF front-end, designed for the TDRSS* Ka-

band Service

- Receive: 22.515 23.115 GHz
 - 50 MHz bandwidth
- Transmit: 25.65 26.16 GHz
 - 225 MHz bandwidth

*TDRSS: Tracking and Data Relay Satellite System

Harris SDR Hardware

- **Features**
 - Modular architecture
 - Mixture of commercial and custom cards
 - 6U Compact-PCI backplane

External S-band to Ka-band frequency converter

- Modem Processor
 - Virtex IV FPGAs, DSP
 - Management ASIC
 - Scrubbing
 - Configuration
 - Internal SpaceWire Router

Size: 16" x 10" x 8"

Weight: 19.2 kg

Power: 100 W

Harris SDR Software

- Waveform Application
 - GPP
 - Specialized Processing

Operating Environment

- Third Party **Application** Development
 - Development environment for third party waveform developers

Waveform Application

- Baseline Waveform developed by Harris Corporation
- Resource consumption
 - ~1/2 of FPGA resources (includes triple-mode-redundancy)
 - Does not use DSP

	Transmit	Receive	
Frequency	25.65 GHz	22.6795036 GHz	
Data Rate	300 kbps to 100 Mbps	300 kbps to 25 Mbps	
Modulation	Offset-QPSK	BPSK	
Line-code	NRZ-L,-M		
Coding	Convolutional, Rate ½, k=7		
Framing	CCSDS 732.0-B-2		
Randomization	CCSDS 131.0-B-2		

Testing

- Extensive testing performed at subsystem and integrated system level
 - TDRSS Compatibility
 - Environmental: Vibration, Thermal, Thermal Vacuum, EMI / EMC
- Pre-flight system performance will be basis for on-orbit evaluation
 - Minimum Signal Level Tracking / Acquisition Threshold
 - Acquisition Time, False Lock susceptibility
 - Coded and Uncoded BER performance vs Eb/N0
 - Frequency Control, Frequency Tracking Range
 - Transmitter Output Spectrum/Spectral Mask
 - Carrier Suppression
- Separation of Platform and Waveform Performance.
 - Platform limited by hardware
 - Waveform limited by implementation

Platform

Waveform

Performance Highlights

	Receive	Transmit
Bandwidth	129.6 MHz, -3 dB	239 MHz, -3 dB
Frequency Setability	0.4 ppm	0.43 ppm
Frequency Stability	0.02 ppm	
Dynamic Range	-110 to -30 dBm	
Noise Figure	2.3 dB (@ 25 C)	
Spurious		No in-band 60 dBc
		No out-of-band 60 dBc
Acquisition Threshold	-91.2 dBm (12.5 Mbps)	
Tracking Threshold	-94.5 dBm (12.5 Mbps)	
Doppler Tracking	1.2 MHz/second	
(+/- 15 kHz)		
Acquisition Frequency	+/- 45 kHz	
Implementation Loss	0.3 dB @ 12.5 Mbps	
Carrier Suppression		>45 dB
Phase Imbalance		±0.5°
Gain Imbalance		±0.05°

Receiver Uncoded Performance, 12.5 Mbps

Transmitter Coded Performance. 100 Mbps

Transmitter Spectrum, Spectral Mask

Future Experiment Use Planned

- Characterize Future NASA Communication System Infrastructure
 - Reconfigure SDR to emulate different missions
 - Reduces risk to science missions as new services/equipment are brought on-line
- Modern Forward Error Correction Codes
 - Low Density Parity Check,
 - Serial Concatenated Convolutional Codes
- Bandwidth Efficient Modulation
 - NASA technology programs looking to incorporate BW efficient modulations e.g. GMSK, 8-PSK
- Delay/Disruption Tolerant Networking (DTN)
- Adaptive Coding/Modulation

Summary

- Space Ka-band SDR transceiver on-orbit and ready for operation
- Excellent pre-flight testing performance, basis for space operations
- Ka-band SDR offers high flexibility, software/firmware defined
 - Other Ka-band space qualified modulators (e.g. GSFC High-Rate Modulator, General Dynamics HRT and Small Deep Space Transponder) employ reconfigurable (predefined) or fixed capability
- **Experiment Proposals Welcome:**
 - NSPIRES (Universities Limited Funding)
 - http://nspires.nasaprs.com/external/index.do
 - Fedbiz Ops (Commercial/Non-profit Unfunded)
 - https://www.fbo.gov/
 - Project Website (Info)
 - http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed